
Navelink.org

Developer forum
25-05-2023

Agenda
1) Navelink Platform status & update

2) Navelink Roadmap (Head of concept Navelink)

3) Service development discussions & information
a) Forum service developers (Each developer)

b) Forum security and interoperability (Each developer)

c) Ongoing work within the STM-community (Trello) (Each developer)

4) Overview of Navelink usage

5) Q&A
a) New questions (All)

6) Upgraded G1128 schema

7) Navelink HOW-Tos

8) GetPublicKey

9) Discussion: Navelink + REST + MMS + VDES

10) Closing remarks

1) Navelink Platform status & update

• Since the last meeting:

– MIR version 1.2.0 tested in internal environment

• Awaiting official release before implementing to DEV, TEST

and PROD environments.

• Future

– Create Navelink specific email adresses in each

organization?

– NCSR 10 meeting decisions?

Received questions

•

Planned
Release

Planned
Release

Planned
Release

2) Navelink Roadmap

Increase SECOM
Compliance

Support new Service
Specifications and Designs

Add Service
Ledger support

Add MMS
support

Increase VDES
support

Add SECOM
Hotel

Add support for
Service Payment

Enable subscription on
Navelink technical notes

Enhance functionality
to host payload formats

Add GetPublicKey

Add SecretKeyExchange

Add MRR usage

3) Servicedevelopment discussions & information

• Forum service developers

– Common discussions

• Forum Security and interoperability

– Common discussions

• Ongoing work within the STM-community (Trello)

– Trello check

– Common standardization work: S-124, S-421, SECOM, General STM news

4) Overview on Navelink usage
2023-05-24

Events since last Dev Forum:
Minor changes

Navelink Operational environment Service Registrations
Service Specifications: 1 (Voyage Information Service v2.2)
Service Technical Design: 1 (Voyage Information Service Design v2.2)
Service Instances: 171

Operational environment

Operational environment

5) Q&A

• Any Questions? The floor is open.

6) Upgraded G1128 Schema (September 2022)

• G1128 v1.0 "early"

• G1128 v1.3 (latest implemented in Navelink)

v1.3v1.0 "early"

Changed Service Endpoint

• When changing the service endpoint for an instance, the certificate domain

name is not automatically changed and need to updated as well.

• When updating the Certificate domain, remember to issue new certificates.

• To handle services in Navelink, the permission SERVICEADMIN must be

added for the User.

Update of G1128 Service Documentation schemas

https://www.iala-aism.org/product/g1128/

The IALA G1128 contains guidelines/specifications for documentation and

description of services. It contains both textual documentation, document

templates and XML schemas for describing services in the 3 defined levels;

Specification, Design and Instance.

In Navelink, the data model in Service Registry is based on G1128 XML schemas

with some complementary attributes. Creating and registering a new service in

Navelink Service Registry is mainly done by uploading an XML describing the

service. This XML shall follow the G1128 XML Schema (XSD).

Current version in Navelink is G1128 v1.3 schemas but intends for now to be

backward compatible with v1.0 "early".

https://www.iala-aism.org/product/g1128/

G1128 v1.3

Differences
• serviceType: CharacterString -> ServiceType[1..*]
• URL->endpoint

serviceType

• Need to decide and harmonize use of field

serviceType

7) Navelink HOW –TO create keys and get them signed

• How to create keys – and the removed function in v1.2

• How to get keys signed by Navelink (CSR=Certificate Signing Request)

• Certificate renewal and certificate revocation

• Validation of certificate

• Certificate revocation list

HOW-TO Issue Certificates in Navelink

Certificates can be issued from Navelink in different ways.

1) Manually through the Web Portal

2) With REST service calls to Navelink Identity Registry

Certificates in Navelink are formatted as X.509 Certificates (RFC 5280) and are

based on private – public key pair. The Certificate is in this context the signed public

key. The private key belongs to the creator only.

To avoid transferring the private key on the internet, it’s strongly recommended to

create the private-public key pair locally, and then transfer only the public part of the

certificate to Navelink to be signed and stored as valid certificate attached to the

specific identity.

From v1.2 of MCP and Navelink the function to create private key on Navelink server

is removed. The key can still be created through Web Management Portal on local

browser.

Guidelines for issuing certificate through Web Portal
1) Login to the Web Portal for your target environment

(each environment in Navelink has its own Root

Certificate)

2) Select the entity in focus for the certificate. If the

entity is a Service Instance, the entity can be

selected either in Identity Registry as ID Service, or

the Service Instance in Service Registry part in the

portal.

3) Press button “Issue new Certificate”

If you don’t see the button, you don’t have the right

permissions.

4) Follow the guidelines. The only choice now is to

select “Local” button. This means that the private key

is created in your local browser and is not transferred

on the internet.

5) Follow the guidelines. If you don’t need a keystore

file, press “Manual” and you will receive a ZIP-file

with Private key, Public key and Certificate.

maritimeconnectivity/IdentityRegistry: MCP (Maritime Connectivity Platform) Identity Registry API (github.com)

https://github.com/maritimeconnectivity/IdentityRegistry

HOW-TO Get keys signed withCSR
Reference: MCC description on GitHub

https://github.com/maritimeconnectivity/IdentityRegistry

The MIR supports signing of PEM encoded PKCS#10 certificate signing requests. It is

usually generated for the entity where the certificate will be stored/owned and

contains the entity's information such as the organization name, common name

(domain name), locality, and country, which will be overwritten by the corresponding

information stored in MIR. A CSR also contains the public key that will be included in

the certificate. A private key is usually created at the same time that you create the

CSR, and is expected to be stored and treated securely.

The algorithm and bit-length pairs of CSR that MIR supports are RSA:>=2048,

DSA:>=2048, ECC:>=224, and EdDSA:256.

The rationale to use CSR is to protect your private key and
never have it in transit on Internet.

https://github.com/maritimeconnectivity/IdentityRegistry

Step 1 Generate keys

ECC

$ openssl ecparam -out privateKey.pem -name secp384r1 –genkey
$ openssl ecparam -out privateKey.pem -name secp256r1 –genkey

RSA

$ openssl genrsa -out privateKey.pem 2048

DSA

$ openssl dsaparam -genkey 2048 | openssl dsa -out privateKey.pem

EdDSA

$ TBD
Protect your private keys with passphrase
$ openssl ec -aes256 –in privateKey.pem -out protectedPrivateKey.pem

$ openssl rsa –aes256 -in privateKey.pem -out protectedPrivateKey.pem

RSA:>=2048, DSA:>=2048, EC:>=224, and EdDSA:256

Step 2: Generate CSR

$ openssl req -new -key privateKey.pem -out request.csr

This will prompt you to fill in the attributes of the certificate. For this
you can just use dummy data as they in the end will be replaced

with data from the MIR database.

$ openssl version
OpenSSL 1.1.1g 21 Apr 2020

Step 3: Send CSR to MIR for signing

CSR for Service certificate

Navelink DEV

$ curl.exe -i -v -k --output “csr.output” --key “<MIR_PrivateKey.pem>" --cert “<MIR_Certificate.pem>" --header "Accept:

application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐dev:navelink/service/<serviceMRN>/<serviceVersion>/certificate/issue‐new/csr"

-T “request.csr”

Navelink TEST

$ curl.exe -i -v -k --output “csr.output” --key “<MIR_PrivateKey.pem>" --cert “<MIR_Certificate.pem>" --header "Accept:

application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://api‐x509.test.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐test:navelink/service/<serviceMRN>/<serviceVersion>/certificate/issue-new/csr"

-T “request.csr”

Navelink OPS

$ curl.exe -i -v -k --output “csr.output” --key “<MIR_PrivateKey.pem>" --cert “<MIR_Certificate.pem>" --header "Accept:

application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://api‐x509.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink:navelink/service/<serviceMRN>/<serviceVersion>/certificate/issue‐new/csr" -T

“request.csr”

Navelink ORG MRN
DEV: urn:mrn:mcp:org:navelink-dev
TEST: urn:mrn:mcp:org:navelink-test
OPS: urn:mrn:mcp:org:navelink

Navelink MIR URL
DEV: https://api-x509.dev.navelink.org
TEST: https://api-x509.test.navelink.org
OPS: https://api-x509.navelink.org

Replace all yellow marked text with actual data.
NB! Often absolute paths are required by CURL for the keys.

Step 3: Send CSR to MIR for signing

CSR for Device certificate

Navelink DEV

$ curl.exe -i -v -k --output “csr.output” --key “<MIR_PrivateKey.pem>" --cert “<MIR_Certificate.pem>" --header "Accept:

application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐dev:navelink/device/<deviceMRN>/<version>/certificate/issue‐new/csr" -T

“request.csr”

Navelink TEST

$ curl.exe -i -v -k --output “csr.output” --key “<MIR_PrivateKey.pem>" --cert “<MIR_Certificate.pem>" --header "Accept:

application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://api‐x509.test.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐test:navelink/device/<deviceMRN>/<version>/certificate/issue-new/csr" -T

“request.csr”

Navelink OPS

$ curl.exe -i -v -k --output “csr.output” --key “<MIR_PrivateKey.pem>" --cert “<MIR_Certificate.pem>" --header "Accept:

application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://api‐x509.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink:navelink/device/<deviceMRN>/<version>/certificate/issue‐new/csr" -T “request.csr”

Navelink ORG MRN
DEV: urn:mrn:mcp:org:navelink-dev
TEST: urn:mrn:mcp:org:navelink-test
OPS: urn:mrn:mcp:org:navelink

Navelink MIR URL
DEV: https://api-x509.dev.navelink.org
TEST: https://api-x509.test.navelink.org
OPS: https://api-x509.navelink.org

Replace all yellow marked text with actual data.
NB! Often absolute paths are required by CURL for the keys.

Step 3: Send CSR to MIR for signing

The result from the CSR request be a certificate chain containing of the signed

certificate followed by the intermediate CA that signed it, looking like this:

-----BEGIN CERTIFICATE-----

....

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

....

-----END CERTIFICATE-----

Store the first certificate in a file e.g. Certificate.pem, this is your signed public

key. The Certificate can also be downloaded through the web portal.

You have now a Private-Public key pair that can be used for signing of data

and authentication.

Example
$ curl.exe -i -v -k --output "NLP-DEV_csr.output" --key "C:\Users\MikaelOlofsson\Documents\Navelink\Certificates\Private\NLP-DEV_PrivateKey_Mikael_Olofsson.pem" --cert
"C:\Users\MikaelOlofsson\Documents\Navelink\Certificates\Private\NLP-DEV_Certificate_Mikael_Olofsson.pem" --header "Accept: application/pem‐certificate‐chain;application/json;charset=UTF-8" --header "Content-
Type: text/plain" --http1.1 -X POST
"https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐dev:navelink/service/urn:mrn:mcp:service:navelink‐dev:navelink:instance:mikael‐test‐idservice/1/certificate/issue-new/csr" -T "request.csr"
2>"NLP-DEV_csr.error"

curl.exe -i -v --output "NLP-DEV_signedKeys_EC256.output" -k --key "C:\Navelink\Certificates\NLP-DEV_PrivateKey_Mikael_Olofsson_22Nov04.pem" --cert "C:\Navelink\Certificates\NLP-
DEV_Certificate_Mikael_Olofsson_22Nov04.pem" --header "Accept: application/pem-certificate-chain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST "https://api-
x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink-dev:navelink/device/urn:mrn:mcp:device:navelink-dev:navelink:vdes:vdes-1/certificate/issue-new/csr" -T "ec256-key-pair.csr" 2>csrEC256.error

Verify the certificate

The CSR request gives you the signed public key and the intermediate certificate used for the

signing.

The certificate can be verified by

1) Check the certificate with OCSP
openssl ocsp -issuer navelink-test-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.test.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-test:navelink-idreg

the yellow markings need to be adjusted depending on which environment you want to check against.

2) Download the public certificate from portal and compare (can only be done within your own

organization)

3) REST call using the certificate as verification of certificate validity

1) REST call to Navelink MIR

2) REST call to another service (e.g. VIS instance)

http://api.test.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-test:navelink-idreg

Check Certificate with OCSP

Navelink DEV

$ openssl ocsp -issuer navelink-dev-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.dev.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-dev:navelink-idreg

Navelink TEST

$ openssl ocsp -issuer navelink-test-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.test.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-test:navelink-idreg

Navelink OPS

$ openssl ocsp -issuer navelink-ops-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink:navelink -idreg

$ openssl version
OpenSSL 1.1.1g 21 Apr 2020

The trusted Public Root Certificate for Navelink DEV
environment is found on
https://api.dev.navelink.org/trust-chain.pem

https://api.test.navelink.org/trust-chain.pem
https://api.navelink.org/trust-chain.pem

Navelink ORG MRN
DEV: urn:mrn:mcp:org:navelink-dev
TEST: urn:mrn:mcp:org:navelink-test
OPS: urn:mrn:mcp:org:navelink

Navelink MIR URL
DEV: https://api-x509.dev.navelink.org
TEST: https://api-x509.test.navelink.org
OPS: https://api-x509.navelink.org

Replace all yellow marked text with actual data.

https://api.dev.navelink.org/trust-chain.pem
https://api.test.navelink.org/trust-chain.pem
https://api.navelink.org/trust-chain.pem

Check Certificate by comparison to downloaded Certificate

Log on to Web portal for the environment

Find your service in ID Services

Download the public certificate

The file will be single line with the public certificate.
Compare this file to the first certificate received in the CSR
request response.

Make a REST call using the certificate

If you retrieve the service from Service Registry you made a CSR request for, the public certificate is also received together

with revocation status etc.

$ curl.exe -i -v -k --key <privateKey.pem> --cert <certificate.pem> --header "Accept:application/json" --header

"Content‐Type:application/json" --http1.1 -X GET

https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐dev:navelink/service/<ServiceMRN>

Replace all yellow marked text with actual data.

Example:

$ curl.exe -i -v -k --key C:\Users\MikaelOlofsson\Documents\Navelink\Examples\CSR\NLP-DEV_S1_privateKey.pem --cert

C:\Users\MikaelOlofsson\Documents\Navelink\Examples\CSR\NLP-DEV_S1_certificate.pem --header "Accept:application/json" --header "Content-Type:application/json" --http1.1

-X GET https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink‐dev:navelink/service/urn:mrn:mcp:service:navelink‐dev:navelink:instance:mikael-test-idservice

https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:Navelink‐dev:navelink/service/
https://api‐x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:Navelink‐dev:navelink/service/urn:mrn:mcp:service:Navelink‐dev:navelink:instance:mikael-test-idservice

Troubleshooting

• HTTP 406 when using the certificate

You don’t have the permission. The permission

will follow the permissions set on the entity in

focus.

• Please be careful to copy and paste from PDF

since characters in the examples may be

different.

Information in Certificates

ORG

USER

VESSEL

DEVICE

SERVICE

Service can
be linked to
Vessel and
the details
from Vessel i
stamped
into Service
Certificate

M
IR

 e
n

ti
ti

es

8) GetPublicKey

Use Cases and needs

• Create offline list of known public keys

– e.g. ship will be without internet connection but may receive signed data by other

communication means

• Get opposite public key to exchange secret data performing a

Diffie-Hellman procedure

– e.g. HMAC keys, other symmetric encryption keys, private keys, smaller messages

Questions

– Are the identity or identifier always known?

– Need for "Get All Public keys"?

 "Get All Public Keys for VDES devices/group"?

"Get All Public Keys for Services of type VTS?

– Are there standardised format for returning ID + PEM in a list?

Own JSON format?

Client

GET /publicKey/<id>

application/x-pem-file

Can return
multiple

certificates

GET /publicKey?group=vdes

application/json

9) Discussion: Navelink + REST + MMS + VDES

Internet network

SECOM Module

MMS
Agent

MMS Edge
Router

VDES network

IP

IP

VDES
VDES

Transponder

IP

IP

MMS
Agent

MMS
Edge

Router
IP

MIR
MSR

MMS Edge
Router

Service ID and addressing
• MRN + URL for Service Instance REST Ship
• MRN + URL for Service Instance REST Shore
• MRN for MMS Queue Ship
• MRN for MMS Queue Shore
• MRN + URL for MMS Router

VDES

Transponder/
Modem

VDES

• "authenticator”?
• Service lookup?
• Service bulletin?
• Public Keys?

SECOM REST
Service

SECOM REST
Service

GET

POST

Transmit - receive

GET

SHIP

SHORE

EC
D

IS
 o

r
o

th
er

 o
n

b
o

a
rd

eq

u
ip

m
en

t

A
p

p
lica

tio
n

(s)

MMS Router

MMS – REST
WebService

bridge?

SECOM
Module

MMS Edge
Router

MMS Router

10) Closing remarks

• Pause for Summer Vacation

– July & August

• Next Developer Forum at 22/06-2023

Meeting notes (1/2)
• Service registry as an open registry contains today contact mails to persons, but it would beneficial here to use functional mails instead of personal

mails. A risk with common mailboxes is they can slip under the radar, but it might still be good to have them. SMA already has one such mailbox
used in the Service Registry.

– If you have a function email that you want us to use for general emails, Dev. Forum and Service registry, please let us know at info@navelink.org

• NCSR (Navigation Communication Search and Rescue) is a subcommittee of IMO. On the May agenda was SMAs proposal for mandating route
exchange using S-421 and the proposal was approved. We need to note that although it was accepted, and it was decided that it should be
implemented in ECDIS from now on it is NOT a regulation as of now. S-421 route plan, will follow same introduction process as other ECDIS

standards, so it will be recommended from 2024 and mandatory in 2029.

– SMA currently has two project ongoing, one of which is Navigational Assistance, which will use Navelink for publishing the services.

– Thinking of making the SECOM compliance much more accessible with raspberry pi:s acting as support systems.

• Security is an issueand VDES may be one way to move away from the internet and the risks it poses, discussions are currently ongoing.

• Should we continue with the Trello or should we drop it? We will pause it and move any issues to other platforms.

• We have different ways of communicating VDES, MMS etc. One thing that has been an issue is the distribution of these functionalities with current
APIs to the ships and this is an ongoing discussion. How can we distribute the capabilities of receiving messages through SECOM?

– We return to this point in later notes as the image of the communication is in a later slide from where this discussion arous e.

• Last September Navelink was upgraded to G1128 v.1.3 schema where one of the changes is that the XML field "endpoint" was previously called
"URL" and many use "URL" and the old XML schema for registration. Currently you can register services with both the old version and the new

version of G1128 schemas.

– Should we continue supporting "URL" or should we just use "endpoint" and change current registrations? Will Search and GET instances be affected? Mikael will check until the next Developer forum.

Peter checked quickly and as long as you parse the JSON instead of xml you should not have any problems. Important viewpoint: More important to keep backwards compatibility in Search and Get

than on registration of new instances.

Meeting notes (2/2)
• Navelink plan to provide Public keys for the VDES testbed before the summer.

• In MIR there is a Vessel entity where you can add more information about the vessel. That Vessel information will be visible in certificates
issued on the vessel entity. You can also attach that Vessel to a Service and the vessel infromation will also be stamped into the Service
Certificate. So you can use either service certificate or vessel certificate to sign the data.

– We recommend using the service entity and certificate as the most generic entity and most informative content in the certificate, especially on ship side. Optionally the service can be registered in

Service Registry, but that would be for the reason to publish the service, not for the reason to sign data and announce who I am for authentication.

• Please send us feedback on the HOW-TO and which functions you would like us to go through!
PowerPoint Presentation (navelink.org)

• Mikael believe it is time to create SECOM services for S-421 Route Plan and other S-products, and plan for the phase out of VIS services
using RTZ.

• There is uncertainty regarding what formats will be transferred over the VDES and MMS. Stefan Pielmeier is leading a group for
standardization of VDES by RTCM.

– Specification for MMS can be found at the github for those in the MCC MMS Work group. Participation is free. If you want access and joining, please contact us or MCC.

• Next meeting 2023-06-22

https://navelink.org/wp-content/uploads/2022/01/Navelink-HOW-TO-Issue-Certificates-in-Navelink-incl.-CSR.pdf

Navelink.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36

